Subgradient Methods

Wing-Kin (Ken) Ma
Department of Electronic Engineering,
The Chinese University Hong Kong, Hong Kong

Lesson 13, ELEG5481

Subgradient Methods

- Subgradient methods are a class of simple methods for solving convex problems, including those with nondifferentiable functions.
- developed in the Soviet Union in the 60's and 70's by Shor and others.
- can be slow (perhaps very slow) in convergence.
- can be applied to many different problems, including those where interior-point methods cannot be used.
- can used to decouple or decompose a large problem into many smaller ones. This has played a significant role in internet optimization, network utility max., and dynamic spectrum management in multiuser multicarrier systems.

Definition of Subgradient

- A vector $\boldsymbol{g} \in \mathbb{R}^{n}$ is said to be a subgradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $\boldsymbol{x} \in \operatorname{dom} f$ if, for all $\boldsymbol{z} \in \operatorname{dom} f$,

$$
f(\boldsymbol{z}) \geq f(\boldsymbol{x})+\boldsymbol{g}^{T}(\boldsymbol{z}-\boldsymbol{x})
$$

- If f is convex and differentiable, then its gradient $\nabla f(\boldsymbol{x})$ at \boldsymbol{x} is a subgradient.
- A subgradient can exist even when f is nondifferentiable at \boldsymbol{x}.

Subdifferential

- A function f is called subdifferentiable at x if at least one subgradient of f exists at \boldsymbol{x}.
- The set of all subgradients at \boldsymbol{x} is called the subdifferential of f at \boldsymbol{x}, and is denoted as

$$
\partial f(\boldsymbol{x})
$$

- A function f is called subdifferentiable if it is subdifferentiable at all $\boldsymbol{x} \in \operatorname{dom} f$.

Example: Absolute value

- Consider $f(x)=|x|$.
- A subgradient of f at x, denoted as g here, is

$$
g=\left\{\begin{aligned}
1, & x>0 \\
-1, & x<0 \\
\text { any value between }-1 \text { and } 1, & x=0
\end{aligned}\right.
$$

- The subdifferential is

$$
\partial f(x)=\left\{\begin{array}{rr}
\{1\}, & x>0 \\
\{-1\}, & x<0 \\
{[-1,1],} & x=0
\end{array}\right.
$$

- Note that $|x|$ is not differentiable; the derivative does not exist at $x=0$.

Basic Properties of Subgradients

- $\partial f(\boldsymbol{x})$ is a closed convex set, even for nonconvex f.
- If f is convex and $\boldsymbol{x} \in \operatorname{int} \operatorname{dom} f$, then $\partial f(\boldsymbol{x})$ is nonempty and bounded. (that means a convex f is usually subdifferentiable)
- If f is convex and differentiable, then

$$
\partial f(\boldsymbol{x})=\{\nabla f(\boldsymbol{x})\} .
$$

- If f is convex and $\partial f(\boldsymbol{x})=\{\boldsymbol{g}\}$, then f is differentiable at \boldsymbol{x}.
- \boldsymbol{x}^{\star} is a minimizer of a convex f if and only if f is is subdifferentiable at \boldsymbol{x}^{\star} and

$$
\mathbf{0} \in \partial f\left(\boldsymbol{x}^{\star}\right)
$$

Calculus of Subgradients

- nonnegative scaling: for $\alpha \geq 0$,

$$
\partial(\alpha f)(\boldsymbol{x})=\alpha \partial f(\boldsymbol{x})
$$

- sum: Suppose $f=f_{1}+\ldots+f_{m}, f_{i}$ all being convex.

$$
\partial f(\boldsymbol{x})=\partial f_{1}(\boldsymbol{x})+\ldots+\partial f_{m}(\boldsymbol{x})
$$

The same property applies to integrals.

- affine transformation of domain: Suppose f is convex, and let $h(\boldsymbol{x})=f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})$.

$$
\partial h(\boldsymbol{x})=\boldsymbol{A}^{T} \partial f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}) .
$$

- pointwise max.: Suppose f_{1}, \ldots, f_{m} are convex, and let $f(\boldsymbol{x})=\max _{i=1, \ldots, m} f_{i}(\boldsymbol{x})$.

$$
\partial f(\boldsymbol{x})=\operatorname{conv} \cup\left\{\partial f_{i}(\boldsymbol{x}) \mid f_{i}(\boldsymbol{x})=f(\boldsymbol{x})\right\}
$$

Example: Pointwise Linear Function

- Consider

$$
f(\boldsymbol{x})=\max _{i=1, \ldots, m} \boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}
$$

- Let $f_{i}(\boldsymbol{x})=\boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}$. We have $\partial f_{i}(\boldsymbol{x})=\left\{\boldsymbol{a}_{i}\right\}$.
- Let $\mathcal{K}(\boldsymbol{x})=\left\{j \mid \boldsymbol{a}_{j}^{T} \boldsymbol{x}+b_{j}=\max _{i=1, \ldots, m} \boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}\right\}$.

$$
\partial f(\boldsymbol{x})=\operatorname{conv} \bigcup_{j \in \mathcal{K}(\boldsymbol{x})}\left\{\boldsymbol{a}_{j}\right\}
$$

- In particular, when $\mathcal{K}(\boldsymbol{x})=\{k\}$, we have $\partial f(\boldsymbol{x})=\left\{\boldsymbol{a}_{k}\right\}$.

Example: 1-norm

- Consider

$$
f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}=\underbrace{\left|x_{1}\right|}_{f_{1}}+\ldots+\underbrace{\left|x_{n}\right|}_{f_{n}}
$$

- Its subdifferential is

$$
\begin{aligned}
\partial f(\boldsymbol{x}) & =\partial f_{1}(\boldsymbol{x})+\ldots+\partial f_{m}(\boldsymbol{x}) \\
& =\left\{\boldsymbol{g} \mid g_{i}=1 \text { if } x_{i}>0, g_{i}=-1 \text { if } x_{i}<0, g_{i} \in[-1,1] \text { if } x_{i}=0\right\}
\end{aligned}
$$

- Alternatively,

$$
f(\boldsymbol{x})=\max _{\boldsymbol{s} \in\{-1,1\}^{n}} \underbrace{\boldsymbol{s}^{T} \boldsymbol{x}}_{f_{\boldsymbol{s}}(\boldsymbol{x})}
$$

and

$$
\begin{aligned}
\partial f(\boldsymbol{x}) & =\operatorname{conv} \bigcup\left\{\partial f_{\boldsymbol{s}}(\boldsymbol{x}) \mid s^{T} \boldsymbol{x}=\|\boldsymbol{x}\|_{1}, \boldsymbol{s} \in\{-1,1\}^{n}\right\} \\
& =\left\{\boldsymbol{s} \mid \boldsymbol{s}^{T} \boldsymbol{x}=\|\boldsymbol{x}\|_{1}, \boldsymbol{s} \in[-1,1]^{n}\right\}
\end{aligned}
$$

- To put it simple, $\operatorname{sign}(\boldsymbol{x})$ is a subgradient of f at \boldsymbol{x}.

Supremum

- The pointwise max. result can be extended to supremum. Suppose

$$
f(\boldsymbol{x})=\sup _{\alpha \in \mathcal{A}} f_{\alpha}(\boldsymbol{x})
$$

where f_{α} are subdifferentiable and \mathcal{A} is compact.

$$
\partial f(\boldsymbol{x})=\operatorname{conv} \cup\left\{\partial f_{\alpha}(\boldsymbol{x}) \mid f_{\alpha}(\boldsymbol{x})=f(\boldsymbol{x})\right\}
$$

- Example: Consider $f(\boldsymbol{x})=\lambda_{\max }(\boldsymbol{A}(\boldsymbol{x})), \boldsymbol{A}(\boldsymbol{x})=\boldsymbol{A}_{0}+\sum_{i=1}^{n} x_{i} \boldsymbol{A}_{i}$. Since

$$
\lambda_{\max }(\boldsymbol{A}(\boldsymbol{x}))=\sup _{\|\boldsymbol{y}\|_{2}=1} f_{\boldsymbol{y}}(\boldsymbol{x}), \quad f_{\boldsymbol{y}}(\boldsymbol{x})=\boldsymbol{y}^{T} \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{y}
$$

we have

$$
\partial f(\boldsymbol{x})=\operatorname{conv} \cup\left\{\left(\boldsymbol{y}^{T} \boldsymbol{A}_{1} \boldsymbol{y}, \ldots, \boldsymbol{y}^{T} \boldsymbol{A}_{n} \boldsymbol{y}\right) \mid \boldsymbol{y} \text { a principal eigenvector of } \boldsymbol{A}(\boldsymbol{x})\right\}
$$

In particular, if the max. eigenvector of $\boldsymbol{A}(\boldsymbol{x}), \boldsymbol{y}$, is unique,

$$
\partial f(\boldsymbol{x})=\left\{\left(\boldsymbol{y}^{T} \boldsymbol{A}_{1} \boldsymbol{y}, \ldots, \boldsymbol{y}^{T} \boldsymbol{A}_{n} \boldsymbol{y}\right)\right\} .
$$

The Subgradient Method for Unconstrained Opt.

- The goal is to solve

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$

- A basic subgradient method:

```
given \(\left\{\alpha_{k}\right\}\), a step size sequence; \& an initial point \(\boldsymbol{x}^{(0)}\).
\(k:=0 ; i_{\text {best }}:=0\).
repeat
    \(\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}\), where \(\boldsymbol{g}^{(k)}\) is any subgradient of \(f\) at \(\boldsymbol{x}^{(k)}\).
    \(k:=k+1\).
    \(f_{\text {best }}^{(k)}=\min \left\{f_{\text {best }}^{(k-1)}, f\left(\boldsymbol{x}^{(k)}\right)\right\}\). If \(f\left(\boldsymbol{x}^{(k)}\right)=f_{\text {best }}^{(k)}\), then \(i_{\text {best }}:=k\).
until a stopping criterion is satisfied.
output \(\boldsymbol{x}^{\left(i_{\text {best }}\right)}\).
```

- Look similar to the gradient descent method (for differentiable f), but not the same.
- choose the best point among the generated sequence $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots$.

Step Size Rules

There are many different choices for the step sizes. Some typical rules are

- Constant step size: $\alpha_{k}=\alpha$.
- Constant step length: $\alpha_{k}=\gamma /\left\|\boldsymbol{g}^{(k)}\right\|_{2}$, where $\gamma>0$.
- Square summable but not summable: the step sizes satisfy

$$
\alpha_{k} \geq 0, \quad \sum_{k=1}^{\infty} \alpha_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty
$$

An example is $\alpha_{k}=a /(b+k)$, where $a, b>0$.

- Nonsummable diminishing: The step sizes satisfy

$$
\alpha_{k} \geq 0, \quad \lim _{k \rightarrow \infty} \alpha_{k}=0, \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty
$$

An example is $\alpha_{k}=a / \sqrt{k}$, where $a>0$.

Convergence

Let $f^{\star}=\inf _{\boldsymbol{x}} f(\boldsymbol{x})$, and G be such that $\left\|\boldsymbol{g}^{(k)}\right\|_{2} \leq G$ for all k.

- Constant step size $\alpha_{k}=\alpha$:

$$
\lim _{k \rightarrow \infty} f_{\text {best }}^{(k)}-f^{\star} \leq G^{2} \alpha / 2
$$

- Constant step length $\alpha_{k}=\gamma /\left\|\boldsymbol{g}^{(k)}\right\|_{2}, \gamma>0$:

$$
\lim _{k \rightarrow \infty} f_{\text {best }}^{(k)}-f^{\star} \leq G \gamma / 2
$$

- Square summable but not summable; and nonsummable diminishing:

$$
\lim _{k \rightarrow \infty} f_{\text {best }}^{(k)}=f^{\star}
$$

Given a solution precision ϵ, the number of iterates k for achieving $f_{\text {best }}^{(k)}-f^{\star}<\epsilon$ can also be proven.

Example: Minimizing a piece-wise linear function

- Consider

$$
\min _{\boldsymbol{x}}\left(\max _{i=1, \ldots, m} \boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}\right)
$$

- At the k iteration, find an (any) index for which

$$
\boldsymbol{a}_{j}^{T} \boldsymbol{x}^{(k)}+b_{j}=\max _{i=1, \ldots, m} \boldsymbol{a}_{i}^{T} \boldsymbol{x}^{(k)}+b_{i}
$$

and we have

$$
\boldsymbol{g}^{(k)}=\boldsymbol{a}_{j}
$$

Example: Solving SDPs

- The basic subgradient method may be used to solve SDPs (are you sure?)
- For simplicity, consider

$$
\begin{aligned}
& \min _{\boldsymbol{X}} \operatorname{Tr}(\boldsymbol{C} \boldsymbol{X}) \\
& \text { s.t. } X_{i i}=1, i=1, \ldots, n \\
& \quad \boldsymbol{X} \succeq \mathbf{0}
\end{aligned}
$$

which has well-known applications in approximating MAXCUT \& ML MIMO detection.

Example: Solving SDPs (cont'd)

- Let us add a redundant equality to the SDP

$$
\begin{aligned}
\min _{\boldsymbol{X}} & \operatorname{Tr}(\boldsymbol{C} \boldsymbol{X}) \\
\text { s.t. } & \boldsymbol{X} \succeq \mathbf{0}, \quad X_{i i}=1, \quad i=1, \ldots, n \\
& \operatorname{Tr}(\boldsymbol{X})=n
\end{aligned}
$$

The dual of the SDP above is

$$
\begin{aligned}
& \max _{\boldsymbol{\mu}, \nu}-\boldsymbol{\mu}^{T} \mathbf{1}-n \nu \\
& \text { s.t. } \boldsymbol{C}+\boldsymbol{D}(\boldsymbol{\mu})+\nu \boldsymbol{I} \succeq \mathbf{0}
\end{aligned}
$$

- Since

$$
\boldsymbol{C}+\boldsymbol{D}(\boldsymbol{\mu})+\nu \boldsymbol{I} \succeq \mathbf{0} \Longleftrightarrow \lambda_{\min }(\boldsymbol{C}+\boldsymbol{D}(\boldsymbol{\mu})) \geq-\nu
$$

we can rewrite the dual problem as an unconstrained problem

$$
\max _{\boldsymbol{\mu}}-\boldsymbol{\mu}^{T} \mathbf{1}+n \lambda_{\min }(\boldsymbol{C}+\boldsymbol{D}(\boldsymbol{\mu}))
$$

Example: Solving SDPs (cont'd)

- Now we deal with the dual problem

$$
\max _{\boldsymbol{\mu}} d(\boldsymbol{\mu}) \triangleq-\boldsymbol{\mu}^{T} \mathbf{1}+n \lambda_{\min }(\boldsymbol{C}+\boldsymbol{D}(\boldsymbol{\mu}))
$$

by subgradient.

- A subgradient of $-d(\boldsymbol{\mu})$ at $\boldsymbol{\mu}$ is

$$
\boldsymbol{g}=\mathbf{1}-n \boldsymbol{q}_{\min }^{2}
$$

where the superscript 2 denotes the elementwise square, and $\boldsymbol{q}_{\text {min }}$ is a minimum eigenvector of $\boldsymbol{C}+\boldsymbol{D}(\boldsymbol{\mu})$.

Example: Solving SDPs (cont'd)

Figure 1: The value $d_{\text {best }}^{(k)}$ versus the iteration number k, for the subgradient method for SDP. The problem size is $n=20$, and the step size rule is $\alpha_{k}=1 / \sqrt{k}$.

The Projected Subgradient Method

- The goal is to solve

$$
\min _{\boldsymbol{x} \in \mathcal{C}} f(\boldsymbol{x})
$$

where \mathcal{C} is a convex set.

- In the projected subgradient method, the iterates are obtained by

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{\mathcal { P }}_{\mathcal{C}}\left(\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}\right)
$$

where $\mathcal{P}_{\mathcal{C}}$ is the Euclidean projection on \mathcal{C}; i.e.,

$$
\mathcal{P}_{\mathcal{C}}(\boldsymbol{x})=\arg \min _{\boldsymbol{y} \in \mathcal{C}}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}
$$

- The convergence result is similar to that of the basic subgradient method.

Example: 1-norm minimization

- Consider

$$
\begin{aligned}
& \min \|\boldsymbol{x}\|_{1} \\
& \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{aligned}
$$

where \boldsymbol{A} is fat.

- We have $\operatorname{sign}(\boldsymbol{x}) \in \partial f(\boldsymbol{x})$
- We have $\mathcal{C}=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\}$, and

$$
\mathcal{P}(\boldsymbol{y})=\boldsymbol{A}^{\dagger} \boldsymbol{b}+\left(\boldsymbol{I}-\boldsymbol{A} \boldsymbol{A}^{\dagger}\right) \boldsymbol{y}
$$

where $\boldsymbol{A}^{\dagger}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1}$.

- The corresponding projected gradient update is

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k}\left(\boldsymbol{I}-\boldsymbol{A} \boldsymbol{A}^{\dagger}\right) \operatorname{sign}(\boldsymbol{x})
$$

Example: 1-norm minimization (cont'd)

Figure 2: The gap $f_{\text {best }}^{(k)}-f^{\star}$ versus the iteration number k, for the projected subgradient method for 1 -norm minimization. The problem size is $m=50$, $n=1000$, and the step size rule is $\alpha_{k}=0.5 / k$.

The projected subgradient method is efficient only when the projection on \mathcal{C} can be easily computed; e.g.,

- An affine set: linear projection
- A halfspace: similar to affine sets
- The set of non-ve nos. $\mathcal{C}=\mathbb{R}_{+}^{n}$, a box $\mathcal{C}=\left\{\boldsymbol{x} \mid-1 \leq x_{i} \leq 1, i=1, \ldots, n\right\}$: projection is truncation
- A 2-norm ball $\mathcal{C}=\left\{\boldsymbol{x} \mid\|\boldsymbol{x}\|_{2} \leq 1\right\}$: projection is rescaling.
- An ellipsoid: no closed form, but can be easily computed.
- Simplex $\mathcal{C}=\left\{\boldsymbol{x} \succeq \mathbf{0} \mid \boldsymbol{x}^{T} \mathbf{1} \leq 1\right\}$: no closed form, but can be easily computed.
- The cone of PSD matrices: projection is to discard eigen-components that are -ve.

Projected Subgradient for Dual Problems

- We consider a constrained, not necessarily convex, problem

$$
\begin{aligned}
\min _{\boldsymbol{x}} & f_{0}(\boldsymbol{x}) \\
\text { s.t. } & f_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m
\end{aligned}
$$

- We focus on dealing with its dual

$$
\begin{gathered}
\max _{\boldsymbol{\lambda}} d(\boldsymbol{\lambda}) \\
\text { s.t. } \boldsymbol{\lambda} \succeq \mathbf{0}
\end{gathered}
$$

where $d(\boldsymbol{\lambda})=\inf _{\boldsymbol{x}}\left(f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{x})\right)$.

- Recall that $d(\boldsymbol{\lambda})$ is always concave, even when the primal problem is nonconvex.
- The projected subgradient method can be applied, if we can compute the subgradients of $d(\boldsymbol{\lambda})$.
- Let

$$
\boldsymbol{x}^{\star}(\boldsymbol{\lambda})=\arg \min _{\boldsymbol{x}}\left(f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{x})\right)
$$

denote a minimizer that attains $d(\boldsymbol{\lambda})$. We can write

$$
d(\boldsymbol{\lambda})=f_{0}\left(\boldsymbol{x}^{\star}(\boldsymbol{\lambda})\right)+\sum_{i=1}^{m} \lambda_{i} f_{i}\left(\boldsymbol{x}^{\star}(\boldsymbol{\lambda})\right)
$$

- A subgradient of $-d$ at $\boldsymbol{\lambda}$ is then

$$
-\left(f_{1}\left(\boldsymbol{x}^{\star}(\boldsymbol{\lambda})\right), \ldots, f_{m}\left(\boldsymbol{x}^{\star}(\boldsymbol{\lambda})\right)\right) \in \partial(-d)(\boldsymbol{\lambda})
$$

- The updates of projected subgradient applied to dual max. is

$$
\begin{aligned}
& \text { solve for } \boldsymbol{x}^{(k)}=\arg \min _{\boldsymbol{x}}\left(f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i}^{(k)} f_{i}(\boldsymbol{x})\right) \\
& \lambda_{i}^{(k+1)}=\left(\lambda_{i}^{(k)}+\alpha_{k} f_{i}\left(\boldsymbol{x}^{(k)}\right)\right)_{+}, \quad i=1, \ldots, m
\end{aligned}
$$

where $(\cdot)_{+}$is the projection on \mathbb{R}_{+}. That is say, we are solving a sequence of unconstrained Lagrangian minimization.

- The projected subgradient method is a Lagrangian dual relaxation, in general. The generated points $\boldsymbol{x}^{(k)}$ may not be primal feasible.
- Suppose strong duality holds (e.g., convex problems with the Slater condition), and each $\boldsymbol{x}^{(k)}$ is a unique minimizer. Then the limit point of $\boldsymbol{x}^{(k)}$ is primal feasible (in fact, optimal).
- This dual max. approach, a.k.a. dual decomposition in some applications, plays a significant role.

Application: Dynamic Spectrum Management (DSM)

- Scenario: A multiuser subcarrier system, with K users and N subcarriers.
- Goal: joint power allocation for sum rate maximization

$$
\begin{array}{rlr}
\max & \sum_{n=1}^{N} \sum_{k=1}^{K} \log \left(1+\operatorname{SINR}_{k}^{n}\left(s_{1}^{n}, \ldots, s_{K}^{n}\right)\right) & \text { (rates of all subcarriers \& users) } \\
\text { s.t. } & \sum_{n=1}^{N} s_{k}^{n} \leq P_{k}, \quad k=1, \ldots, K & \text { (per-user total power constraint) } \\
& 0 \leq s_{k}^{n} \leq S_{\max }, \quad \forall k, n & \text { (per-subcarrier power limit) }
\end{array}
$$

where the opt. variable s_{k}^{n} is the power of k th user at subcarrier n, and

$$
\operatorname{SINR}_{k}^{n}\left(s_{1}^{n}, \ldots, s_{K}^{n}\right)=\frac{\alpha_{k k}^{n} s_{k}^{n}}{\sigma_{k}^{n}+\sum_{j \neq k} \alpha_{k j}^{n} s_{j}^{n}}
$$

is the SINR of user k at subcarrier n.

Why DSM is hard?

- The DSM sum rate max. problem

$$
\begin{aligned}
\max & \sum_{n=1}^{N} \sum_{k=1}^{K} \log \left(1+\operatorname{SINR}_{k}^{n}\left(s_{1}^{n}, \ldots, s_{K}^{n}\right)\right) \\
\text { s.t. } & \sum_{n=1}^{N} s_{k}^{n} \leq P_{k}, \quad k=1, \ldots, K \\
& 0 \leq s_{k}^{n} \leq S_{\text {max }}, \quad k=1, \ldots, K, n=1, \ldots, N
\end{aligned}
$$

is nonconvex, even for $N=1$.

- It is NP-hard in general.
- The no. of subcarriers N can be large; e.g., $N=256, N=1024, \ldots$, and per-user power constraints make the rate max. coupled w.r.t. subcarriers.
- The dual of the DSM problem is

$$
\begin{aligned}
& \min \boldsymbol{p}^{T} \boldsymbol{\lambda}+\varphi(\boldsymbol{\lambda}) \\
& \text { s.t. } \boldsymbol{\lambda} \succeq \mathbf{0}
\end{aligned}
$$

where $\boldsymbol{p}=\left(P_{1}, \ldots, P_{K}\right)$,

$$
\begin{aligned}
& \varphi(\boldsymbol{\lambda})= \max \left(\sum_{n=1}^{N} \sum_{k=1}^{K} \log \left(1+\operatorname{SINR}_{k}^{n}\left(s_{1}^{n}, \ldots, s_{K}^{n}\right)\right)-\lambda_{k} s_{k}^{n}\right) \\
& \text { s.t. } 0 \leq s_{k}^{n} \leq S_{\max }, k=1, \ldots, K, n=1, \ldots, N
\end{aligned}
$$

- An important result is that

$$
\varphi(\boldsymbol{\lambda})=\sum_{n=1}^{N} \max _{\substack{s_{1}^{n}, \ldots, s_{K}^{n}, 0 \leq s_{k}^{n} \leq S_{\max }}}\left(\sum_{k=1}^{K} \log \left(1+\operatorname{SINR}_{k}^{n}\left(s_{1}^{n}, \ldots, s_{K}^{n}\right)\right)-\lambda_{k} s_{k}^{n}\right)
$$

i.e., $\varphi(\boldsymbol{\lambda})$ decomposes to many per-subcarrier power allocation problems.

- What remains is that we need to solve the per-subcarrier problems

$$
\varphi_{n}(\boldsymbol{\lambda})=\max _{\substack{s_{1}^{n}, \ldots, s_{K}^{n}, 0 \leq s_{k}^{n} \leq S_{\max }}}\left(\sum_{k=1}^{K} \log \left(1+\operatorname{SINR}_{k}^{n}\left(s_{1}^{n}, \ldots, s_{K}^{n}\right)\right)-\lambda_{k} s_{k}^{n}\right)
$$

for $n=1, \ldots, N$.

- The problem above is still nonconvex.
- For $K=2$, exhaustive search was used (OSB [Cendrillon et al.'06]).
- For $K>2$, some approximation methods should be used.
- For the OFDMA variation (one subcarrier can only be occupied by one user), there is a simple way of solving the per-subcarrier problem [Luo-Zhang'09].
- (there are many more refs. \& nice results in DSM that I have no time to mention here)

Optimal value of a convex opt. problem

- Consider the optimal value of a convex optimization problem

$$
\begin{aligned}
\phi(\boldsymbol{x}, \boldsymbol{y})= & \min _{\boldsymbol{z}} f_{0}(\boldsymbol{z}) \\
& \text { s.t. } f_{i}(\boldsymbol{z}) \leq x_{i}, i=1, \ldots, m, \quad \boldsymbol{A} \boldsymbol{z}=\boldsymbol{y}
\end{aligned}
$$

where $f_{0}, f_{1}, \ldots, f_{m}$ are convex. Its dual is

$$
\begin{aligned}
\phi(\boldsymbol{x}, \boldsymbol{y})= & \max _{\boldsymbol{\lambda}, \boldsymbol{\mu}} g(\boldsymbol{\lambda}, \boldsymbol{\mu})-\boldsymbol{x}^{T} \boldsymbol{\lambda}-\boldsymbol{y}^{T} \boldsymbol{\mu} \\
& \text { s.t. } \boldsymbol{\lambda} \succeq \mathbf{0}
\end{aligned}
$$

where $g(\boldsymbol{\lambda}, \boldsymbol{\mu})=\inf _{\boldsymbol{z}}\left(f_{0}(\boldsymbol{z})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{z})+\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{z}\right)$.

- Suppose that strong duality holds at $(\boldsymbol{x}, \boldsymbol{y})$, \& let $\left(\boldsymbol{\lambda}^{\star}, \boldsymbol{\mu}^{\star}\right)$ be a dual opt. solution fixing $(\boldsymbol{x}, \boldsymbol{y})$.

$$
-\left(\boldsymbol{\lambda}^{\star}, \boldsymbol{\mu}^{\star}\right) \in \partial \phi(\boldsymbol{x}, \boldsymbol{y})
$$

- This property is useful, e.g., in primal decomposition methods.

Application: MIMO BC Capacity

- Scenario: A multiuser MIMO broadcast channel (BC).
- Goal: Solve the MIMO BC capacity, which has been shown to be

$$
\begin{aligned}
\max _{\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{K}} & \log \operatorname{det}\left(\boldsymbol{I}+\sum_{k=1}^{K} \boldsymbol{H}_{k} \boldsymbol{Q}_{k} \boldsymbol{H}_{k}^{H}\right) \\
\text { s.t. } & \sum_{k=1}^{K} \operatorname{Tr}\left(\boldsymbol{Q}_{k}\right) \leq P_{\text {total }} \\
& \boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{K} \succeq \mathbf{0}
\end{aligned}
$$

where \boldsymbol{H}_{k} is MIMO channel from the basestation to user k.

- This problem is convex (CVX can do the job).
- Can we derive a simple algorithm by using the subgradient concepts?

A Related Problem: MIMO MAC Capacity

- To solve MIMO BC, let us look at a related problem- MIMO multiple access channel (MAC).

$$
\begin{array}{r}
\max _{\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{K} \succeq 0} \\
\operatorname{sit} \\
\log \operatorname{det}\left(\boldsymbol{I}+\sum_{k=1}^{K} \boldsymbol{H}_{k} \boldsymbol{Q}_{k} \boldsymbol{H}_{k}^{H}\right) \\
\left.\boldsymbol{Q}_{k}\right) \leq P_{k}, \quad k=1, \ldots, K
\end{array}
$$

where P_{k} is the total power limit of user k.

- The MIMO MAC capacity is convex.
- A convenient way of solving the MIMO MAC capacity is to use the iterative water filling algorithm (IWFA):
- at each iteration, maximize the objective fn. w.r.t. a Q_{k} while fixing the other $\left\{\boldsymbol{Q}_{\ell}\right\}_{\ell \neq k}$.
- the maximization at each iteration is a single-user water filling problem.

Projected Subgradient for MIMO BC Capacity

- We can write the MIMO BC capacity as

$$
\begin{aligned}
& \max _{P_{1}, \ldots, P_{K}} \underbrace{\left(\begin{array}{rc}
\max _{\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{K} \succeq \mathbf{0}} & \log \operatorname{det}\left(\boldsymbol{I}+\sum_{k=1}^{K} \boldsymbol{H}_{k} \boldsymbol{Q}_{k} \boldsymbol{H}_{k}^{H}\right) \\
\text { s.t. } & \operatorname{Tr}\left(\boldsymbol{Q}_{k}\right) \leq P_{k}, \quad k=1, \ldots, K
\end{array}\right)}_{\triangleq \phi(\boldsymbol{p})} \\
& \text { s.t. } \boldsymbol{p}^{T} \mathbf{1} \leq P_{\text {total }}
\end{aligned}
$$

that is, we use the subgradients of $-\phi(\boldsymbol{p})$ to solve the MIMO BC capacity.

- Specifically, the updates in projected subgradient are find $\boldsymbol{\lambda}^{(k)}$ that is an optimal dual solution of $\phi\left(\boldsymbol{p}^{(k)}\right)$, by IWFA.

$$
\boldsymbol{p}^{(k+1)}=\left(\boldsymbol{p}^{(k)}+\alpha_{k} \boldsymbol{\lambda}^{(k)}\right)_{\mathcal{S}}
$$

where \mathcal{S} is the projection on the simplex $\mathcal{S}=\left\{\boldsymbol{p} \mid \boldsymbol{p}^{T} \mathbf{1} \leq P_{\text {total }}\right\}$ (no closed form, but can be easily computed [hint: it's like water filling]).

Figure 3: The gap $f_{\text {best }}^{(k)}-f^{\star}$ versus the iteration number k, for the projected subgradient method applied to MIMO BC capacity computations. $M_{t}=12$, $M_{r}=4, K=3, P_{\text {total }}=100$, and the step size rule is $\alpha_{k}=9 / \sqrt{k}$.

Subgradient Method for Constrained Optimization

- Consider a convex problem

$$
\begin{aligned}
\min & f_{0}(\boldsymbol{x}) \\
\text { s.t. } & f_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, m
\end{aligned}
$$

We have seen that by applying the subgradient method to the dual, the problem can be solved.

- The subgradient method can also be applied directly to the primal.
- The method takes the same form

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}
$$

where

$$
\boldsymbol{g}^{(k)} \in \begin{cases}\partial f_{0}\left(\boldsymbol{x}^{(k)}\right), & f_{i}\left(\boldsymbol{x}^{(k)}\right) \leq 0, i=1, \ldots, m \\ \partial f_{j}\left(\boldsymbol{x}^{(k)}\right), & f_{j}\left(\boldsymbol{x}^{(k)}\right)>0\end{cases}
$$

Discussion

- Subgradient methods may provide low-complexity implementations to certain problems, but possibly with low accuracy.
- There are approaches that can speed up convergence; e.g., ellipsoid methods, cutting plane methods, bundle methods, ... They are more complex requiring more computations to carry out the update.

References on Subgradient Methods

N. Shor, Minimization Methods for Non-Differentiable Functions, Springer Series in Computational Mathematics, Springer, 1985.
D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
S. Boyd and A. Mutapcic, Subgradient Methods, Notes for EE364b, Stanford University, 2006. Available online.

References on Applications

[Cendrillon et al.'06] R. Cendrillon, W. Yu, M. Moonen, J. Verlinden, and T. Bostoen, "Optimal multiuser spectrum balancing for digital subscriber lines," IEEE Trans. Commun., vol. 54, no. 5, 2006.
[Luo-Zhang'09] Z.-Q. Luo and S. Zhang, "Duality gap estimation and polynomial time approximation for optimal spectrum management," IEEE Trans. Signal Process., vol. 57, no. 7, 2009.
[Palomar'05] D. P. Palomar, "Convex Primal Decomposition for Multicarrier Linear MIMO Transceivers," IEEE Trans. on Signal Processing, vol. 53, no. 12, Dec. 2005.
[Yu’03] W. Yu, "A Dual Decomposition Approach to the Sum Power Gaussian Vector Multiple Access Channel Sum Capacity Problem," in Proc. Conf. on Information and Systems (CISS), The Johns Hopkins Univ., March 12-14, 2003.

