Subgradient Methods

Wing-Kin (Ken) Ma

Department of Electronic Engineering, The Chinese University Hong Kong, Hong Kong

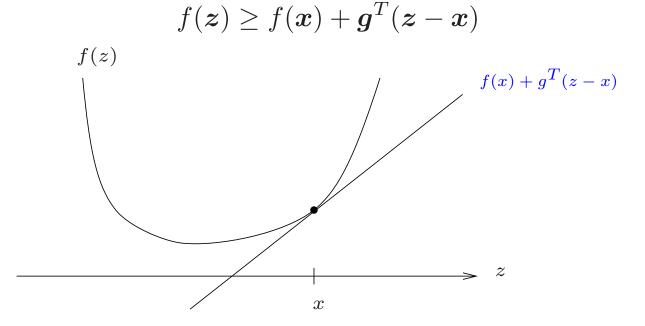
Lesson 13, ELEG5481

Subgradient Methods

- Subgradient methods are a class of simple methods for solving convex problems, including those with nondifferentiable functions.
- developed in the Soviet Union in the 60's and 70's by Shor and others.
- can be slow (perhaps very slow) in convergence.
- can be applied to many different problems, including those where interior-point methods cannot be used.
- can used to decouple or decompose a large problem into many smaller ones. This has played a significant role in internet optimization, network utility max., and dynamic spectrum management in multiuser multicarrier systems.

Definition of Subgradient

• A vector $g \in \mathbb{R}^n$ is said to be a *subgradient* of $f : \mathbb{R}^n \to \mathbb{R}$ at $x \in \text{dom} f$ if, for all $z \in \text{dom} f$,



- If f is convex and differentiable, then its gradient $\nabla f(x)$ at x is a subgradient.
- A subgradient can exist even when f is nondifferentiable at x.

Subdifferential

- A function f is called subdifferentiable at x if at least one subgradient of f exists at x.
- The set of all subgradients at x is called the *subdifferential* of f at x, and is denoted as

 $\partial f(\boldsymbol{x})$

• A function f is called subdifferentiable if it is subdifferentiable at all $x \in \text{dom} f$.

Example: Absolute value

- Consider f(x) = |x|.
- A subgradient of f at x, denoted as g here, is

$$g = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \\ \text{any value between } -1 \text{ and } 1, & x = 0 \end{cases}$$

• The subdifferential is

$$\partial f(x) = \begin{cases} \{1\}, & x > 0\\ \{-1\}, & x < 0\\ [-1,1], & x = 0 \end{cases}$$

• Note that |x| is not differentiable; the derivative does not exist at x = 0.

Basic Properties of Subgradients

- $\partial f(x)$ is a closed convex set, even for nonconvex f.
- If f is convex and $x \in int \text{ dom } f$, then $\partial f(x)$ is nonempty and bounded. (that means a convex f is usually subdifferentiable)
- If f is convex and differentiable, then

$$\partial f(\boldsymbol{x}) = \{\nabla f(\boldsymbol{x})\}.$$

- If f is convex and $\partial f(x) = \{g\}$, then f is differentiable at x.
- x^{\star} is a minimizer of a convex f if and only if f is is subdifferentiable at x^{\star} and

 $\mathbf{0} \in \partial f(\boldsymbol{x}^{\star}).$

Calculus of Subgradients

• nonnegative scaling: for $\alpha \ge 0$,

 $\partial(\alpha f)(\boldsymbol{x}) = \alpha \partial f(\boldsymbol{x})$

• sum: Suppose $f = f_1 + \ldots + f_m$, f_i all being convex.

$$\partial f(\boldsymbol{x}) = \partial f_1(\boldsymbol{x}) + \ldots + \partial f_m(\boldsymbol{x})$$

The same property applies to integrals.

• affine transformation of domain: Suppose f is convex, and let h(x) = f(Ax+b).

$$\partial h(\boldsymbol{x}) = \boldsymbol{A}^T \partial f(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}).$$

• pointwise max.: Suppose f_1, \ldots, f_m are convex, and let $f(\boldsymbol{x}) = \max_{i=1,\ldots,m} f_i(\boldsymbol{x})$.

$$\partial f(\boldsymbol{x}) = \operatorname{conv} \cup \{\partial f_i(\boldsymbol{x}) | f_i(\boldsymbol{x}) = f(\boldsymbol{x})\}$$

Example: Pointwise Linear Function

• Consider

$$f(\boldsymbol{x}) = \max_{i=1,\dots,m} \boldsymbol{a}_i^T \boldsymbol{x} + b_i$$

• Let $f_i(\boldsymbol{x}) = \boldsymbol{a}_i^T \boldsymbol{x} + b_i$. We have $\partial f_i(\boldsymbol{x}) = \{\boldsymbol{a}_i\}$.

• Let
$$\mathcal{K}(\boldsymbol{x}) = \left\{ j \mid \boldsymbol{a}_j^T \boldsymbol{x} + b_j = \max_{i=1,...,m} \boldsymbol{a}_i^T \boldsymbol{x} + b_i \right\}.$$

$$\partial f(\boldsymbol{x}) = \operatorname{conv} \bigcup_{j \in \mathcal{K}(\boldsymbol{x})} \{\boldsymbol{a}_j\}$$

• In particular, when $\mathcal{K}(\boldsymbol{x}) = \{k\}$, we have $\partial f(\boldsymbol{x}) = \{\boldsymbol{a}_k\}$.

Example: 1-norm

• Consider

$$f(\boldsymbol{x}) = \|\boldsymbol{x}\|_1 = \underbrace{|x_1|}_{f_1} + \ldots + \underbrace{|x_n|}_{f_n}$$

• Its subdifferential is

$$\partial f(\boldsymbol{x}) = \partial f_1(\boldsymbol{x}) + \ldots + \partial f_m(\boldsymbol{x}) \\ = \{ \boldsymbol{g} \mid g_i = 1 \text{ if } x_i > 0, \ g_i = -1 \text{ if } x_i < 0, \ g_i \in [-1, 1] \text{ if } x_i = 0 \}$$

• Alternatively,

$$f(\boldsymbol{x}) = \max_{\boldsymbol{s} \in \{-1,1\}^n} \underbrace{\boldsymbol{s}^T \boldsymbol{x}}_{f_{\boldsymbol{s}}(\boldsymbol{x})}$$

and

$$\partial f(x) = \operatorname{conv} \bigcup \{ \partial f_s(x) | s^T x = \|x\|_1, s \in \{-1, 1\}^n \}$$

= $\{ s | s^T x = \|x\|_1, s \in [-1, 1]^n \}$

• To put it simple, $\operatorname{sign}(\boldsymbol{x})$ is a subgradient of f at \boldsymbol{x} .

Supremum

• The pointwise max. result can be extended to supremum. Suppose

$$f(\boldsymbol{x}) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(\boldsymbol{x})$$

where f_{α} are subdifferentiable and \mathcal{A} is compact.

$$\partial f(\boldsymbol{x}) = \operatorname{conv} \cup \{\partial f_{\alpha}(\boldsymbol{x}) \mid f_{\alpha}(\boldsymbol{x}) = f(\boldsymbol{x})\}$$

• Example: Consider $f(\boldsymbol{x}) = \lambda_{\max}(\boldsymbol{A}(\boldsymbol{x}))$, $\boldsymbol{A}(\boldsymbol{x}) = \boldsymbol{A}_0 + \sum_{i=1}^n x_i \boldsymbol{A}_i$. Since $\lambda_{\max}(\boldsymbol{A}(\boldsymbol{x})) = \sup_{\|\boldsymbol{y}\|_2 = 1} f_{\boldsymbol{y}}(\boldsymbol{x}), \qquad f_{\boldsymbol{y}}(\boldsymbol{x}) = \boldsymbol{y}^T \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{y}$

we have

 $\partial f(\boldsymbol{x}) = \operatorname{conv} \cup \left\{ (\boldsymbol{y}^T \boldsymbol{A}_1 \boldsymbol{y}, \dots, \boldsymbol{y}^T \boldsymbol{A}_n \boldsymbol{y}) \mid \boldsymbol{y} \text{ a principal eigenvector of } \boldsymbol{A}(\boldsymbol{x}) \right\}$

In particular, if the max. eigenvector of $oldsymbol{A}(oldsymbol{x})$, $oldsymbol{y}$, is unique,

$$\partial f(\boldsymbol{x}) = \{(\boldsymbol{y}^T \boldsymbol{A}_1 \boldsymbol{y}, \dots, \boldsymbol{y}^T \boldsymbol{A}_n \boldsymbol{y})\}.$$

The Subgradient Method for Unconstrained Opt.

• The goal is to solve

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$

• A basic subgradient method:

given $\{\alpha_k\}$, a step size sequence; & an initial point $x^{(0)}$. k := 0; $i_{\text{best}} := 0$. **repeat** $x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$, where $g^{(k)}$ is any subgradient of f at $x^{(k)}$. k := k + 1. $f_{\text{best}}^{(k)} = \min\{f_{\text{best}}^{(k-1)}, f(x^{(k)})\}$. If $f(x^{(k)}) = f_{\text{best}}^{(k)}$, then $i_{\text{best}} := k$. **until** a stopping criterion is satisfied. **output** $x^{(i_{\text{best}})}$.

- Look similar to the gradient descent method (for differentiable f), but not the same.
- choose the best point among the generated sequence $oldsymbol{x}^{(1)}, oldsymbol{x}^{(2)}, \ldots$

Step Size Rules

There are many different choices for the step sizes. Some typical rules are

- Constant step size: $\alpha_k = \alpha$.
- Constant step length: $\alpha_k = \gamma / \| \boldsymbol{g}^{(k)} \|_2$, where $\gamma > 0$.
- Square summable but not summable: the step sizes satisfy

$$\alpha_k \ge 0, \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty, \quad \sum_{k=1}^{\infty} \alpha_k = \infty$$

An example is $\alpha_k = a/(b+k)$, where a, b > 0.

• Nonsummable diminishing: The step sizes satisfy

$$\alpha_k \ge 0, \quad \lim_{k \to \infty} \alpha_k = 0, \quad \sum_{k=1}^{\infty} \alpha_k = \infty$$

An example is $\alpha_k = a/\sqrt{k}$, where a > 0.

Convergence

Let $f^{\star} = \inf_{\boldsymbol{x}} f(\boldsymbol{x})$, and G be such that $\|\boldsymbol{g}^{(k)}\|_2 \leq G$ for all k.

• Constant step size $\alpha_k = \alpha$:

$$\lim_{k \to \infty} f_{\text{best}}^{(k)} - f^{\star} \le G^2 \alpha / 2$$

• Constant step length $\alpha_k = \gamma/\|\boldsymbol{g}^{(k)}\|_2$, $\gamma > 0$:

$$\lim_{k \to \infty} f_{\text{best}}^{(k)} - f^{\star} \le G\gamma/2$$

• Square summable but not summable; and nonsummable diminishing:

$$\lim_{k \to \infty} f_{\text{best}}^{(k)} = f^{\star}$$

Given a solution precision ϵ , the number of iterates k for achieving $f_{\text{best}}^{(k)} - f^* < \epsilon$ can also be proven.

Example: Minimizing a piece-wise linear function

• Consider

$$\min_{\boldsymbol{x}} \left(\max_{i=1,...,m} \boldsymbol{a}_i^T \boldsymbol{x} + b_i \right)$$

• At the k iteration, find an (any) index for which

$$\boldsymbol{a}_j^T \boldsymbol{x}^{(k)} + b_j = \max_{i=1,\dots,m} \boldsymbol{a}_i^T \boldsymbol{x}^{(k)} + b_i$$

and we have

$$\boldsymbol{g}^{(k)} = \boldsymbol{a}_j.$$

Example: Solving SDPs

- The basic subgradient method may be used to solve SDPs (are you sure?)
- For simplicity, consider

$$\min_{\mathbf{X}} \operatorname{Tr}(\mathbf{CX})$$

s.t. $X_{ii} = 1, \ i = 1, \dots, n$
 $\mathbf{X} \succeq \mathbf{0}$

which has well-known applications in approximating MAXCUT & ML MIMO detection.

Example: Solving SDPs (cont'd)

• Let us add a redundant equality to the SDP

$$\min_{\mathbf{X}} \operatorname{Tr}(\mathbf{CX})$$

s.t. $\mathbf{X} \succeq \mathbf{0}, \quad X_{ii} = 1, \ i = 1, \dots, n$
 $\operatorname{Tr}(\mathbf{X}) = n$

The dual of the SDP above is

$$\max_{\boldsymbol{\mu},\nu} - \boldsymbol{\mu}^T \mathbf{1} - n\nu$$

s.t. $\boldsymbol{C} + \boldsymbol{D}(\boldsymbol{\mu}) + \nu \boldsymbol{I} \succeq \boldsymbol{0}$

• Since

$$C + D(\mu) + \nu I \succeq \mathbf{0} \Longleftrightarrow \lambda_{\min}(C + D(\mu)) \ge -\nu$$

we can rewrite the dual problem as an unconstrained problem

$$\max_{\boldsymbol{\mu}} - \boldsymbol{\mu}^T \mathbf{1} + n\lambda_{\min}(\boldsymbol{C} + \boldsymbol{D}(\boldsymbol{\mu}))$$

Example: Solving SDPs (cont'd)

• Now we deal with the dual problem

$$\max_{\boldsymbol{\mu}} d(\boldsymbol{\mu}) \triangleq -\boldsymbol{\mu}^T \mathbf{1} + n\lambda_{\min}(\boldsymbol{C} + \boldsymbol{D}(\boldsymbol{\mu}))$$

by subgradient.

• A subgradient of $-d(\boldsymbol{\mu})$ at $\boldsymbol{\mu}$ is

$$\boldsymbol{g} = \boldsymbol{1} - n \boldsymbol{q}_{\min}^2$$

where the superscript 2 denotes the elementwise square, and q_{\min} is a minimum eigenvector of $C + D(\mu)$.

Example: Solving SDPs (cont'd)

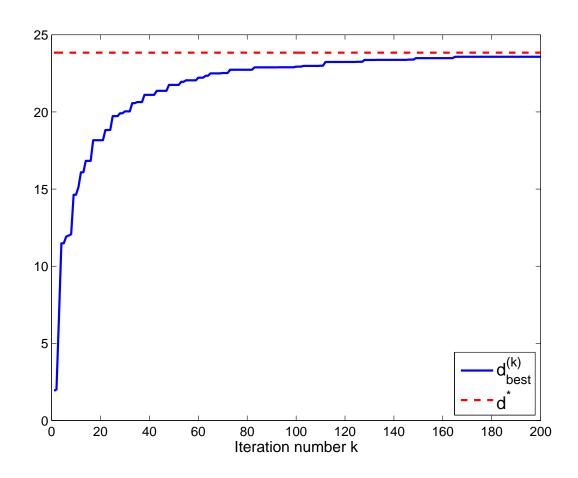


Figure 1: The value $d_{\text{best}}^{(k)}$ versus the iteration number k, for the subgradient method for SDP. The problem size is n = 20, and the step size rule is $\alpha_k = 1/\sqrt{k}$.

The Projected Subgradient Method

• The goal is to solve

 $\min_{\boldsymbol{x}\in\mathcal{C}}f(\boldsymbol{x})$

where $\ensuremath{\mathcal{C}}$ is a convex set.

• In the projected subgradient method, the iterates are obtained by

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{\mathcal{P}}_{\mathcal{C}} \left(\boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{g}^{(k)} \right),$$

where $\mathcal{P}_{\mathcal{C}}$ is the Euclidean projection on \mathcal{C} ; i.e.,

$$oldsymbol{\mathcal{P}}_{\mathcal{C}}(oldsymbol{x}) = rg\min_{oldsymbol{y}\in\mathcal{C}} \|oldsymbol{y}-oldsymbol{x}\|_2^2$$

• The convergence result is similar to that of the basic subgradient method.

Example: 1-norm minimization

• Consider

 $\min \|\boldsymbol{x}\|_1 \\ \text{s.t.} \ \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$

where A is fat.

• We have $\operatorname{sign}(\boldsymbol{x}) \in \partial f(\boldsymbol{x})$

• We have
$$\mathcal{C} = \{ oldsymbol{x} \mid oldsymbol{A} oldsymbol{x} = oldsymbol{b} \}$$
, and

$$\mathcal{P}(\boldsymbol{y}) = \boldsymbol{A}^{\dagger} \boldsymbol{b} + (\boldsymbol{I} - \boldsymbol{A} \boldsymbol{A}^{\dagger}) \boldsymbol{y},$$

where $A^{\dagger} = A^T (AA^T)^{-1}$.

• The corresponding projected gradient update is

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k (\boldsymbol{I} - \boldsymbol{A} \boldsymbol{A}^{\dagger}) \operatorname{sign}(\boldsymbol{x})$$

Example: 1-norm minimization (cont'd)

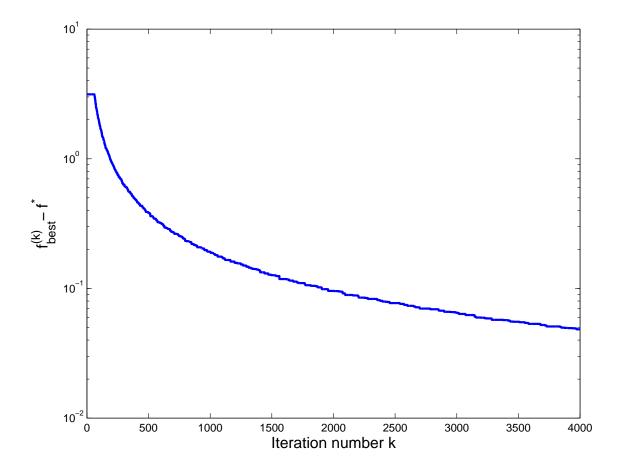


Figure 2: The gap $f_{\text{best}}^{(k)} - f^*$ versus the iteration number k, for the projected subgradient method for 1-norm minimization. The problem size is m = 50, n = 1000, and the step size rule is $\alpha_k = 0.5/k$.

The projected subgradient method is efficient only when the projection on ${\cal C}$ can be easily computed; e.g.,

- An affine set: linear projection
- A halfspace: similar to affine sets
- The set of non-ve nos. $C = \mathbb{R}^n_+$, a box $C = \{x \mid -1 \le x_i \le 1, i = 1, ..., n\}$: projection is truncation
- A 2-norm ball $C = \{x \mid ||x||_2 \le 1\}$: projection is rescaling.
- An ellipsoid: no closed form, but can be easily computed.
- Simplex $C = \{x \succeq 0 \mid x^T 1 \le 1\}$: no closed form, but can be easily computed.
- The cone of PSD matrices: projection is to discard eigen-components that are -ve.

Projected Subgradient for Dual Problems

• We consider a constrained, not necessarily convex, problem

$$\min_{\boldsymbol{x}} f_0(\boldsymbol{x})$$

s.t. $f_i(\boldsymbol{x}) \le 0, \quad i = 1, \dots, m$

• We focus on dealing with its dual

where
$$d(\boldsymbol{\lambda}) = \inf_{\boldsymbol{x}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) \right).$$

- Recall that $d(\lambda)$ is always concave, even when the primal problem is nonconvex.
- The projected subgradient method can be applied, if we can compute the subgradients of $d(\lambda)$.

• Let

$$oldsymbol{x}^{\star}(oldsymbol{\lambda}) = rg\min_{oldsymbol{x}} \left(f_0(oldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(oldsymbol{x})
ight)$$

denote a minimizer that attains $d(\boldsymbol{\lambda})$. We can write

$$d(\boldsymbol{\lambda}) = f_0(\boldsymbol{x}^{\star}(\boldsymbol{\lambda})) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}^{\star}(\boldsymbol{\lambda}))$$

• A subgradient of -d at $\boldsymbol{\lambda}$ is then

$$-(f_1(\boldsymbol{x}^{\star}(\boldsymbol{\lambda})),\ldots,f_m(\boldsymbol{x}^{\star}(\boldsymbol{\lambda}))) \in \partial(-d)(\boldsymbol{\lambda})$$

• The updates of projected subgradient applied to dual max. is

solve for
$$\boldsymbol{x}^{(k)} = \arg \min_{\boldsymbol{x}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^{(k)} f_i(\boldsymbol{x}) \right)$$

$$\lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k f_i(\boldsymbol{x}^{(k)}) \right)_+, \quad i = 1, \dots, m$$

where $(\cdot)_+$ is the projection on \mathbb{R}_+ . That is say, we are solving a sequence of unconstrained Lagrangian minimization.

- The projected subgradient method is a Lagrangian dual relaxation, in general. The generated points $x^{(k)}$ may not be primal feasible.
- Suppose strong duality holds (e.g., convex problems with the Slater condition), and each $x^{(k)}$ is a unique minimizer. Then the limit point of $x^{(k)}$ is primal feasible (in fact, optimal).
- This dual max. approach, a.k.a. dual decomposition in some applications, plays a significant role.

Application: Dynamic Spectrum Management (DSM)

- Scenario: A multiuser subcarrier system, with K users and N subcarriers.
- Goal: joint power allocation for sum rate maximization

$$\max \sum_{n=1}^{N} \sum_{k=1}^{K} \log (1 + \text{SINR}_{k}^{n}(s_{1}^{n}, \dots, s_{K}^{n})) \quad \text{(rates of all subcarriers \& users)}$$

s.t.
$$\sum_{n=1}^{N} s_{k}^{n} \leq P_{k}, \quad k = 1, \dots, K \qquad \text{(per-user total power constraint)}$$
$$0 \leq s_{k}^{n} \leq S_{\max}, \quad \forall k, n \qquad \text{(per-subcarrier power limit)}$$

where the opt. variable s_k^n is the power of kth user at subcarrier n, and

$$\mathsf{SINR}_k^n(s_1^n,\ldots,s_K^n) = \frac{\alpha_{kk}^n s_k^n}{\sigma_k^n + \sum_{j \neq k} \alpha_{kj}^n s_j^n}$$

is the SINR of user k at subcarrier n.

Why DSM is hard?

• The DSM sum rate max. problem

$$\max \sum_{n=1}^{N} \sum_{k=1}^{K} \log \left(1 + \mathsf{SINR}_{k}^{n}(s_{1}^{n}, \dots, s_{K}^{n})\right)$$

s.t.
$$\sum_{n=1}^{N} s_{k}^{n} \leq P_{k}, \quad k = 1, \dots, K$$
$$0 \leq s_{k}^{n} \leq S_{\max}, \quad k = 1, \dots, K, n = 1, \dots, N$$

is nonconvex, even for N = 1.

- It is NP-hard in general.
- The no. of subcarriers N can be large; e.g., N = 256, N = 1024, ..., and per-user power constraints make the rate max. coupled w.r.t. subcarriers.

• The dual of the DSM problem is

min $p^T \lambda + \varphi(\lambda)$ s.t. $\lambda \succeq 0$

where $\boldsymbol{p} = (P_1, \ldots, P_K)$,

$$\varphi(\boldsymbol{\lambda}) = \max\left(\sum_{n=1}^{N}\sum_{k=1}^{K}\log\left(1+\mathsf{SINR}_{k}^{n}(s_{1}^{n},\ldots,s_{K}^{n})\right)-\lambda_{k}s_{k}^{n}\right)$$

s.t. $0 \leq s_{k}^{n} \leq S_{\max}, k = 1,\ldots,K, n = 1,\ldots,N$

• An important result is that

$$\varphi(\boldsymbol{\lambda}) = \sum_{n=1}^{N} \max_{\substack{s_1^n, \dots, s_K^n, \\ 0 \le s_k^n \le S_{\max}}} \left(\sum_{k=1}^{K} \log\left(1 + \mathsf{SINR}_k^n(s_1^n, \dots, s_K^n)\right) - \lambda_k s_k^n \right)$$

i.e., $\varphi(\boldsymbol{\lambda})$ decomposes to many per-subcarrier power allocation problems.

• What remains is that we need to solve the per-subcarrier problems

$$\varphi_n(\boldsymbol{\lambda}) = \max_{\substack{s_1^n, \dots, s_K^n, \\ 0 \le s_k^n \le S_{\max}}} \left(\sum_{k=1}^K \log\left(1 + \mathsf{SINR}_k^n(s_1^n, \dots, s_K^n)\right) - \lambda_k s_k^n \right)$$

for n = 1, ..., N.

- The problem above is still nonconvex.
- For K = 2, exhaustive search was used (OSB [Cendrillon *et al.*'06]).
- For K > 2, some approximation methods should be used.
- For the OFDMA variation (one subcarrier can only be occupied by one user), there is a simple way of solving the per-subcarrier problem **[Luo-Zhang'09]**.
- (there are many more refs. & nice results in DSM that I have no time to mention here)

Optimal value of a convex opt. problem

• Consider the optimal value of a convex optimization problem

$$\phi(\boldsymbol{x}, \boldsymbol{y}) = \min_{\boldsymbol{z}} f_0(\boldsymbol{z})$$

s.t. $f_i(\boldsymbol{z}) \le x_i, \ i = 1, \dots, m, \quad \boldsymbol{A}\boldsymbol{z} = \boldsymbol{y}$

where f_0, f_1, \ldots, f_m are convex. Its dual is

$$\phi(\boldsymbol{x}, \boldsymbol{y}) = \max_{\boldsymbol{\lambda}, \boldsymbol{\mu}} g(\boldsymbol{\lambda}, \boldsymbol{\mu}) - \boldsymbol{x}^T \boldsymbol{\lambda} - \boldsymbol{y}^T \boldsymbol{\mu}$$
s.t. $\boldsymbol{\lambda} \succeq \mathbf{0}$

where $g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\boldsymbol{z}} (f_0(\boldsymbol{z}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{z}) + \boldsymbol{\mu}^T \boldsymbol{A} \boldsymbol{z}).$

- Suppose that strong duality holds at $({\bm x}, {\bm y})$, & let $({\bm \lambda}^\star, {\bm \mu}^\star)$ be a dual opt. solution fixing $({\bm x}, {\bm y}).$

$$-(oldsymbol{\lambda}^{\star},oldsymbol{\mu}^{\star})\in\partial\phi(oldsymbol{x},oldsymbol{y})$$

• This property is useful, e.g., in primal decomposition methods.

Application: MIMO BC Capacity

- Scenario: A multiuser MIMO broadcast channel (BC).
- Goal: Solve the MIMO BC capacity, which has been shown to be

$$\max_{\boldsymbol{Q}_{1},...,\boldsymbol{Q}_{K}} \log \det \left(\boldsymbol{I} + \sum_{k=1}^{K} \boldsymbol{H}_{k} \boldsymbol{Q}_{k} \boldsymbol{H}_{k}^{H} \right)$$

s.t.
$$\sum_{k=1}^{K} \operatorname{Tr}(\boldsymbol{Q}_{k}) \leq P_{\text{total}}$$
$$\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{K} \succeq \boldsymbol{0}$$

where H_k is MIMO channel from the basestation to user k.

- This problem is convex (CVX can do the job).
- Can we derive a simple algorithm by using the subgradient concepts?

A Related Problem: MIMO MAC Capacity

• To solve MIMO BC, let us look at a related problem— MIMO multiple access channel (MAC).

$$\max_{\boldsymbol{Q}_1,\ldots,\boldsymbol{Q}_K\succeq \boldsymbol{0}} \log \det \left(\boldsymbol{I} + \sum_{k=1}^K \boldsymbol{H}_k \boldsymbol{Q}_k \boldsymbol{H}_k^H \right)$$

s.t. $\operatorname{Tr}(\boldsymbol{Q}_k) \leq P_k, \quad k = 1,\ldots,K$

where P_k is the total power limit of user k.

- The MIMO MAC capacity is convex.
- A convenient way of solving the MIMO MAC capacity is to use the iterative water filling algorithm (IWFA):
 - at each iteration, maximize the objective fn. w.r.t. a Q_k while fixing the other $\{Q_\ell\}_{\ell \neq k}$.
 - the maximization at each iteration is a single-user water filling problem.

Projected Subgradient for MIMO BC Capacity

• We can write the MIMO BC capacity as

$$\max_{P_1,...,P_K} \underbrace{\begin{pmatrix} \max_{Q_1,...,Q_K \succeq \mathbf{0}} & \log \det \left(\mathbf{I} + \sum_{k=1}^K \mathbf{H}_k \mathbf{Q}_k \mathbf{H}_k^H \right) \\ \text{s.t.} & \operatorname{Tr}(\mathbf{Q}_k) \leq P_k, \quad k = 1,...,K \end{pmatrix}}_{\triangleq \phi(\mathbf{p})}$$

s.t. $\mathbf{p}^T \mathbf{1} \leq P_{\text{total}}$

that is, we use the subgradients of $-\phi({m p})$ to solve the MIMO BC capacity.

• Specifically, the updates in projected subgradient are

find $\boldsymbol{\lambda}^{(k)}$ that is an optimal dual solution of $\phi(\boldsymbol{p}^{(k)})$, by IWFA. $\boldsymbol{p}^{(k+1)} = \left(\boldsymbol{p}^{(k)} + \alpha_k \boldsymbol{\lambda}^{(k)}\right)_{\mathcal{S}}$

where S is the projection on the simplex $S = \{p \mid p^T 1 \leq P_{\text{total}}\}$ (no closed form, but can be easily computed [hint: it's like water filling]).

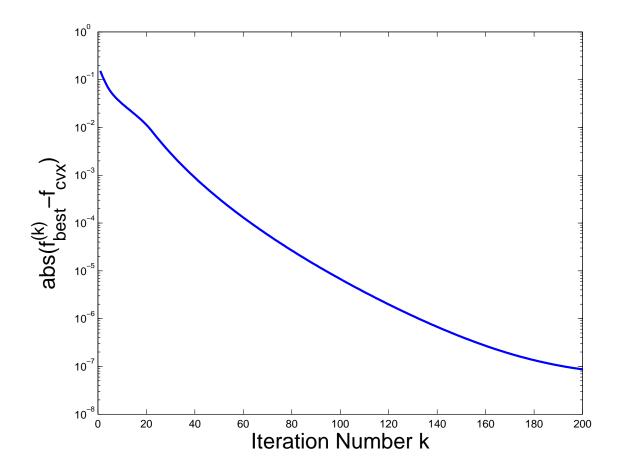


Figure 3: The gap $f_{\text{best}}^{(k)} - f^*$ versus the iteration number k, for the projected subgradient method applied to MIMO BC capacity computations. $M_t = 12$, $M_r = 4$, K = 3, $P_{\text{total}} = 100$, and the step size rule is $\alpha_k = 9/\sqrt{k}$.

Subgradient Method for Constrained Optimization

• Consider a convex problem

 $\min f_0(\boldsymbol{x})$
s.t. $f_i(\boldsymbol{x}) \le 0, i = 1, \dots, m$

We have seen that by applying the subgradient method to the dual, the problem can be solved.

- The subgradient method can also be applied directly to the primal.
- The method takes the same form

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{g}^{(k)}$$

where

$$\boldsymbol{g}^{(k)} \in \begin{cases} \partial f_0(\boldsymbol{x}^{(k)}), & f_i(\boldsymbol{x}^{(k)}) \leq 0, i = 1, \dots, m \\ \partial f_j(\boldsymbol{x}^{(k)}), & f_j(\boldsymbol{x}^{(k)}) > 0 \end{cases}$$

Discussion

- Subgradient methods may provide low-complexity implementations to certain problems, but possibly with low accuracy.
- There are approaches that can speed up convergence; e.g., ellipsoid methods, cutting plane methods, bundle methods, ... They are more complex requiring more computations to carry out the update.

References on Subgradient Methods

N. Shor, *Minimization Methods for Non-Differentiable Functions*, Springer Series in Computational Mathematics, Springer, 1985.

D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

S. Boyd and A. Mutapcic, *Subgradient Methods*, Notes for EE364b, Stanford University, 2006. Available online.

References on Applications

[Cendrillon *et al.***'06]** R. Cendrillon, W. Yu, M. Moonen, J. Verlinden, and T. Bostoen, "Optimal multiuser spectrum balancing for digital subscriber lines," *IEEE Trans. Commun.*, vol. 54, no. 5, 2006.

[Luo-Zhang'09] Z.-Q. Luo and S. Zhang, "Duality gap estimation and polynomial time approximation for optimal spectrum management," *IEEE Trans. Signal Process.*, vol. 57, no. 7, 2009.

[Palomar'05] D. P. Palomar, "Convex Primal Decomposition for Multicarrier Linear MIMO Transceivers," *IEEE Trans. on Signal Processing*, vol. 53, no. 12, Dec. 2005.

[Yu'03] W. Yu, "A Dual Decomposition Approach to the Sum Power Gaussian Vector Multiple Access Channel Sum Capacity Problem," in *Proc. Conf. on Information and Systems (CISS)*, The Johns Hopkins Univ., March 12-14, 2003.