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Subgradient Methods

• Subgradient methods are a class of simple methods for solving convex problems,
including those with nondifferentiable functions.

• developed in the Soviet Union in the 60’s and 70’s by Shor and others.

• can be slow (perhaps very slow) in convergence.

• can be applied to many different problems, including those where interior-point
methods cannot be used.

• can used to decouple or decompose a large problem into many smaller ones.
This has played a significant role in internet optimization, network utility max.,
and dynamic spectrum management in multiuser multicarrier systems.
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Definition of Subgradient

• A vector g ∈ R
n is said to be a subgradient of f : Rn → R at x ∈ domf if, for

all z ∈ domf ,
f(z) ≥ f(x) + gT (z − x)

f(z)

x

z

f(x) + gT (z − x)

• If f is convex and differentiable, then its gradient ∇f(x) at x is a subgradient.

• A subgradient can exist even when f is nondifferentiable at x.
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Subdifferential

• A function f is called subdifferentiable at x if at least one subgradient of f
exists at x.

• The set of all subgradients at x is called the subdifferential of f at x, and is
denoted as

∂f(x)

• A function f is called subdifferentiable if it is subdifferentiable at all x ∈ domf .
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Example: Absolute value

• Consider f(x) = |x|.

• A subgradient of f at x, denoted as g here, is

g =







1, x > 0
−1, x < 0

any value between −1 and 1, x = 0

• The subdifferential is

∂f(x) =







{1}, x > 0
{−1}, x < 0
[−1, 1], x = 0

• Note that |x| is not differentiable; the derivative does not exist at x = 0.
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Basic Properties of Subgradients

• ∂f(x) is a closed convex set, even for nonconvex f .

• If f is convex and x ∈ int dom f , then ∂f(x) is nonempty and bounded. (that
means a convex f is usually subdifferentiable)

• If f is convex and differentiable, then

∂f(x) = {∇f(x)}.

• If f is convex and ∂f(x) = {g}, then f is differentiable at x.

• x⋆ is a minimizer of a convex f if and only if f is is subdifferentiable at x⋆ and

0 ∈ ∂f(x⋆).
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Calculus of Subgradients

• nonnegative scaling: for α ≥ 0,

∂(αf)(x) = α∂f(x)

• sum: Suppose f = f1 + . . .+ fm, fi all being convex.

∂f(x) = ∂f1(x) + . . .+ ∂fm(x)

The same property applies to integrals.

• affine transformation of domain: Suppose f is convex, and let h(x) = f(Ax+b).

∂h(x) = AT∂f(Ax+ b).

• pointwise max.: Suppose f1, . . . , fm are convex, and let f(x) = max
i=1,...,m

fi(x).

∂f(x) = conv ∪ {∂fi(x)|fi(x) = f(x)}
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Example: Pointwise Linear Function

• Consider
f(x) = max

i=1,...,m
aT
i x+ bi

• Let fi(x) = aT
i x+ bi. We have ∂fi(x) = {ai}.

• Let K(x) =

{

j

∣
∣
∣
∣
aT
j x+ bj = max

i=1,...,m
aT
i x+ bi

}

.

∂f(x) = conv
⋃

j∈K(x)

{aj}

• In particular, when K(x) = {k}, we have ∂f(x) = {ak}.
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Example: 1-norm

• Consider
f(x) = ‖x‖1 = |x1|

︸︷︷︸
f1

+ . . .+ |xn|
︸︷︷︸
fn

• Its subdifferential is

∂f(x) = ∂f1(x) + . . .+ ∂fm(x)

=
{
g
∣
∣ gi = 1 if xi > 0, gi = −1 if xi < 0, gi ∈ [−1, 1] if xi = 0

}

• Alternatively,
f(x) = max

s∈{−1,1}n
sTx︸︷︷︸

fs(x)

and

∂f(x) = conv
⋃

{∂fs(x)|sTx = ‖x‖1, s ∈ {−1, 1}n}

= {s|sTx = ‖x‖1, s ∈ [−1, 1]n}

• To put it simple, sign(x) is a subgradient of f at x.
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Supremum

• The pointwise max. result can be extended to supremum. Suppose

f(x) = sup
α∈A

fα(x)

where fα are subdifferentiable and A is compact.

∂f(x) = conv ∪ {∂fα(x) | fα(x) = f(x)}

• Example: Consider f(x) = λmax(A(x)), A(x) = A0 +
∑n

i=1 xiAi. Since

λmax(A(x)) = sup
‖y‖2=1

fy(x), fy(x) = yTA(x)y

we have

∂f(x) = conv ∪
{
(yTA1y, . . . ,y

TAny) | y a principal eigenvector of A(x)
}

In particular, if the max. eigenvector of A(x), y, is unique,

∂f(x) = {(yTA1y, . . . ,y
TAny)}.
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The Subgradient Method for Unconstrained Opt.

• The goal is to solve
min
x∈Rn

f(x)

• A basic subgradient method:

given {αk}, a step size sequence; & an initial point x(0).
k := 0; ibest := 0.
repeat

x(k+1) = x(k)−αkg
(k), where g(k) is any subgradient of f at x(k).

k := k + 1.
f
(k)
best = min{f (k−1)

best , f(x(k))}. If f(x(k)) = f
(k)
best, then ibest := k.

until a stopping criterion is satisfied.
output x(ibest).

• Look similar to the gradient descent method (for differentiable f), but not the
same.

• choose the best point among the generated sequence x(1),x(2), . . ..
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Step Size Rules
There are many different choices for the step sizes. Some typical rules are

• Constant step size: αk = α.

• Constant step length: αk = γ/‖g(k)‖2, where γ > 0.

• Square summable but not summable: the step sizes satisfy

αk ≥ 0,
∞∑

k=1

α2
k < ∞,

∞∑

k=1

αk = ∞

An example is αk = a/(b+ k), where a, b > 0.

• Nonsummable diminishing: The step sizes satisfy

αk ≥ 0, lim
k→∞

αk = 0,

∞∑

k=1

αk = ∞

An example is αk = a/
√
k, where a > 0.
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Convergence
Let f⋆ = infx f(x), and G be such that ‖g(k)‖2 ≤ G for all k.

• Constant step size αk = α:

lim
k→∞

f
(k)
best − f⋆ ≤ G2α/2

• Constant step length αk = γ/‖g(k)‖2, γ > 0:

lim
k→∞

f
(k)
best − f⋆ ≤ Gγ/2

• Square summable but not summable; and nonsummable diminishing:

lim
k→∞

f
(k)
best = f⋆

Given a solution precision ǫ, the number of iterates k for achieving f
(k)
best−f⋆ < ǫ

can also be proven.
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Example: Minimizing a piece-wise linear function

• Consider

min
x

(

max
i=1,...,m

aT
i x+ bi

)

• At the k iteration, find an (any) index for which

aT
j x

(k) + bj = max
i=1,...,m

aT
i x

(k) + bi

and we have
g(k) = aj.
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Example: Solving SDPs

• The basic subgradient method may be used to solve SDPs (are you sure?)

• For simplicity, consider

min
X

Tr(CX)

s.t. Xii = 1, i = 1, . . . , n

X � 0

which has well-known applications in approximating MAXCUT & ML MIMO
detection.
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Example: Solving SDPs (cont’d)

• Let us add a redundant equality to the SDP

min
X

Tr(CX)

s.t. X � 0, Xii = 1, i = 1, . . . , n

Tr(X) = n

The dual of the SDP above is

max
µ,ν

− µT
1− nν

s.t. C +D(µ) + νI � 0

• Since
C +D(µ) + νI � 0 ⇐⇒ λmin(C +D(µ)) ≥ −ν

we can rewrite the dual problem as an unconstrained problem

max
µ

− µT
1+ nλmin(C +D(µ))
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Example: Solving SDPs (cont’d)

• Now we deal with the dual problem

max
µ

d(µ) , −µT
1+ nλmin(C +D(µ))

by subgradient.

• A subgradient of −d(µ) at µ is

g = 1− nq2
min

where the superscript 2 denotes the elementwise square, and qmin is a minimum
eigenvector of C +D(µ).
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Example: Solving SDPs (cont’d)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Iteration number k

 

 

d
best
(k)

d*

Figure 1: The value d
(k)
best versus the iteration number k, for the subgradient method

for SDP. The problem size is n = 20, and the step size rule is αk = 1/
√
k.
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The Projected Subgradient Method

• The goal is to solve
min
x∈C

f(x)

where C is a convex set.

• In the projected subgradient method, the iterates are obtained by

x(k+1) = PC

(

x(k) − αkg
(k)
)

,

where PC is the Euclidean projection on C; i.e.,

PC(x) = argmin
y∈C

‖y − x‖22

• The convergence result is similar to that of the basic subgradient method.

W.-K. Ma 18



Example: 1-norm minimization

• Consider

min ‖x‖1
s.t. Ax = b

where A is fat.

• We have sign(x) ∈ ∂f(x)

• We have C = {x | Ax = b}, and

P(y) = A†b+ (I −AA†)y,

where A† = AT (AAT )−1.

• The corresponding projected gradient update is

x(k+1) = x(k) − αk(I −AA†)sign(x)
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Example: 1-norm minimization (cont’d)
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Figure 2: The gap f
(k)
best − f⋆ versus the iteration number k, for the projected

subgradient method for 1-norm minimization. The problem size is m = 50,
n = 1000, and the step size rule is αk = 0.5/k.
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The projected subgradient method is efficient only when the projection on C can
be easily computed; e.g.,

• An affine set: linear projection

• A halfspace: similar to affine sets

• The set of non-ve nos. C = R
n
+, a box C = {x | − 1 ≤ xi ≤ 1, i = 1, . . . , n}:

projection is truncation

• A 2-norm ball C = {x | ‖x‖2 ≤ 1}: projection is rescaling.

• An ellipsoid: no closed form, but can be easily computed.

• Simplex C = {x � 0 | xT
1 ≤ 1}: no closed form, but can be easily computed.

• The cone of PSD matrices: projection is to discard eigen-components that are
-ve.
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Projected Subgradient for Dual Problems

• We consider a constrained, not necessarily convex, problem

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

• We focus on dealing with its dual

max
λ

d(λ)

s.t. λ � 0

where d(λ) = inf
x

(

f0(x) +
m∑

i=1

λifi(x)

)

.

• Recall that d(λ) is always concave, even when the primal problem is nonconvex.

• The projected subgradient method can be applied, if we can compute the
subgradients of d(λ).
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• Let
x⋆(λ) = argmin

x
(f0(x) +

∑m

i=1 λifi(x))

denote a minimizer that attains d(λ). We can write

d(λ) = f0(x
⋆(λ)) +

m∑

i=1

λifi(x
⋆(λ))

• A subgradient of −d at λ is then

−(f1(x
⋆(λ)), . . . , fm(x⋆(λ))) ∈ ∂(−d)(λ)

W.-K. Ma 23



• The updates of projected subgradient applied to dual max. is

solve for x(k) = argmin
x

(

f0(x) +
∑m

i=1 λ
(k)
i fi(x)

)

λ
(k+1)
i =

(

λ
(k)
i + αkfi(x

(k))
)

+
, i = 1, . . . ,m

where (·)+ is the projection on R+. That is say, we are solving a sequence of
unconstrained Lagrangian minimization.

• The projected subgradient method is a Lagrangian dual relaxation, in general.
The generated points x(k) may not be primal feasible.

• Suppose strong duality holds (e.g., convex problems with the Slater condition),
and each x(k) is a unique minimizer. Then the limit point of x(k) is primal
feasible (in fact, optimal).

• This dual max. approach, a.k.a. dual decomposition in some applications, plays
a significant role.
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Application: Dynamic Spectrum Management (DSM)

• Scenario: A multiuser subcarrier system, with K users and N subcarriers.

• Goal: joint power allocation for sum rate maximization

max
N∑

n=1

K∑

k=1

log (1 + SINRn
k(s

n
1 , . . . , s

n
K)) (rates of all subcarriers & users)

s.t.

N∑

n=1

snk ≤ Pk, k = 1, . . . ,K (per-user total power constraint)

0 ≤ snk ≤ Smax, ∀k, n (per-subcarrier power limit)

where the opt. variable snk is the power of kth user at subcarrier n, and

SINRn
k(s

n
1 , . . . , s

n
K) =

αn
kks

n
k

σn
k +

∑

j 6=k α
n
kjs

n
j

is the SINR of user k at subcarrier n.
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Why DSM is hard?

• The DSM sum rate max. problem

max
N∑

n=1

K∑

k=1

log (1 + SINRn
k(s

n
1 , . . . , s

n
K))

s.t.
N∑

n=1

snk ≤ Pk, k = 1, . . . ,K

0 ≤ snk ≤ Smax, k = 1, . . . ,K, n = 1, . . . , N

is nonconvex, even for N = 1.

• It is NP-hard in general.

• The no. of subcarriers N can be large; e.g., N = 256, N = 1024, . . ., and
per-user power constraints make the rate max. coupled w.r.t. subcarriers.
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• The dual of the DSM problem is

min pTλ+ ϕ(λ)

s.t. λ � 0

where p = (P1, . . . , PK),

ϕ(λ) = max

(
N∑

n=1

K∑

k=1

log (1 + SINRn
k(s

n
1 , . . . , s

n
K))− λks

n
k

)

s.t. 0 ≤ snk ≤ Smax, k = 1, . . . ,K, n = 1, . . . , N

• An important result is that

ϕ(λ) =

N∑

n=1

max
sn1 ,...,s

n
K,

0≤snk≤Smax

(
K∑

k=1

log (1 + SINRn
k(s

n
1 , . . . , s

n
K))− λks

n
k

)

i.e., ϕ(λ) decomposes to many per-subcarrier power allocation problems.
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• What remains is that we need to solve the per-subcarrier problems

ϕn(λ) = max
sn1 ,...,s

n
K,

0≤snk≤Smax

(
K∑

k=1

log (1 + SINRn
k(s

n
1 , . . . , s

n
K))− λks

n
k

)

for n = 1, . . . , N .

• The problem above is still nonconvex.

• For K = 2, exhaustive search was used (OSB [Cendrillon et al.’06]).

• For K > 2, some approximation methods should be used.

• For the OFDMA variation (one subcarrier can only be occupied by one user),
there is a simple way of solving the per-subcarrier problem [Luo-Zhang’09].

• (there are many more refs. & nice results in DSM that I have no time to mention
here)

W.-K. Ma 28



Optimal value of a convex opt. problem

• Consider the optimal value of a convex optimization problem

φ(x,y) = min
z

f0(z)

s.t. fi(z) ≤ xi, i = 1, . . . ,m, Az = y

where f0, f1, . . . , fm are convex. Its dual is

φ(x,y) = max
λ,µ

g(λ,µ)− xTλ− yTµ

s.t. λ � 0

where g(λ,µ) = infz(f0(z) +
∑m

i=1 λifi(z) + µTAz).

• Suppose that strong duality holds at (x,y), & let (λ⋆,µ⋆) be a dual opt.
solution fixing (x,y).

−(λ⋆,µ⋆) ∈ ∂φ(x,y)

• This property is useful, e.g., in primal decomposition methods.
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Application: MIMO BC Capacity

• Scenario: A multiuser MIMO broadcast channel (BC).

• Goal: Solve the MIMO BC capacity, which has been shown to be

max
Q1,...,QK

log det

(

I +
K∑

k=1

HkQkH
H
k

)

s.t.
K∑

k=1

Tr(Qk) ≤ Ptotal

Q1, . . . ,QK � 0

where Hk is MIMO channel from the basestation to user k.

• This problem is convex (CVX can do the job).

• Can we derive a simple algorithm by using the subgradient concepts?
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A Related Problem: MIMO MAC Capacity

• To solve MIMO BC, let us look at a related problem— MIMO multiple access
channel (MAC).

max
Q1,...,QK�0

log det

(

I +
K∑

k=1

HkQkH
H
k

)

s.t. Tr(Qk) ≤ Pk, k = 1, . . . ,K

where Pk is the total power limit of user k.

• The MIMO MAC capacity is convex.

• A convenient way of solving the MIMO MAC capacity is to use the iterative
water filling algorithm (IWFA):

– at each iteration, maximize the objective fn. w.r.t. a Qk while fixing the
other {Qℓ}ℓ 6=k.

– the maximization at each iteration is a single-user water filling problem.
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Projected Subgradient for MIMO BC Capacity

• We can write the MIMO BC capacity as

max
P1,...,PK

(

maxQ1,...,QK�0 log det
(

I +
∑K

k=1HkQkH
H
k

)

s.t. Tr(Qk) ≤ Pk, k = 1, . . . ,K

)

︸ ︷︷ ︸

,φ(p)

s.t. pT
1 ≤ Ptotal

that is, we use the subgradients of −φ(p) to solve the MIMO BC capacity.

• Specifically, the updates in projected subgradient are

find λ(k) that is an optimal dual solution of φ(p(k)), by IWFA.

p(k+1) =
(

p(k) + αkλ
(k)
)

S

where S is the projection on the simplex S = {p | pT
1 ≤ Ptotal} (no closed

form, but can be easily computed [hint: it’s like water filling]).
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Figure 3: The gap f
(k)
best − f⋆ versus the iteration number k, for the projected

subgradient method applied to MIMO BC capacity computations. Mt = 12,
Mr = 4, K = 3, Ptotal = 100, and the step size rule is αk = 9/

√
k.
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Subgradient Method for Constrained Optimization

• Consider a convex problem

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

We have seen that by applying the subgradient method to the dual, the problem
can be solved.

• The subgradient method can also be applied directly to the primal.

• The method takes the same form

x(k+1) = x(k) − αkg
(k)

where

g(k) ∈
{

∂f0(x
(k)), fi(x

(k)) ≤ 0, i = 1, . . . ,m
∂fj(x

(k)), fj(x
(k)) > 0
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Discussion

• Subgradient methods may provide low-complexity implementations to certain
problems, but possibly with low accuracy.

• There are approaches that can speed up convergence; e.g., ellipsoid methods,
cutting plane methods, bundle methods, . . . They are more complex requiring
more computations to carry out the update.
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